

ANHUI FOSAN SEMICONDUCTOR TECHNOLOGY CO., LTD.

DW01

SOT-23-6L 单锂离子/聚合物电池保护电路

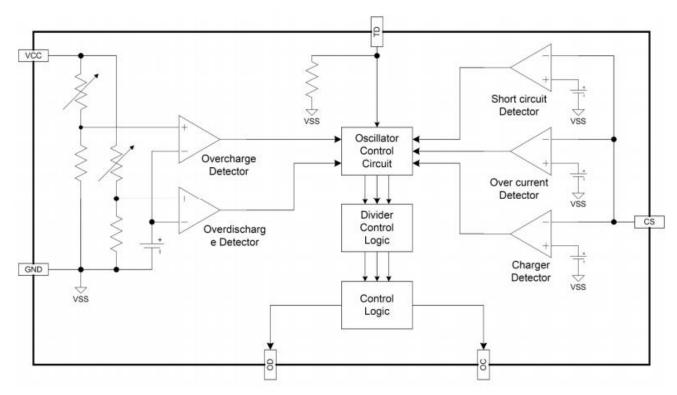
■Description 概述

DW01 是一款应用于锂离子/聚合物电池充电的保护芯片,主要是预防过充电、过放电与过流导致的电池系统(如手机)的损坏或寿命降低。

DW01 使用超小型 SOT23-6L 封装,仅需较少的外部元件即可理想的集成到空间有限的电池组中,同时精确的过充保护电压 4.3V(±50mV)确保对电池安全且充分的充电。

■Features 特点

- 高精度电压检测
- 过放电恢复功能
- 0V 电池充电功能


- 保护延迟时间由内部电路设定
- 电池短路保护
- 外部元件少

■Application Area 应用领域

● 单节锂离子电池

● 锂聚合物电池组

■Internal Schematic Diagram 内部结构

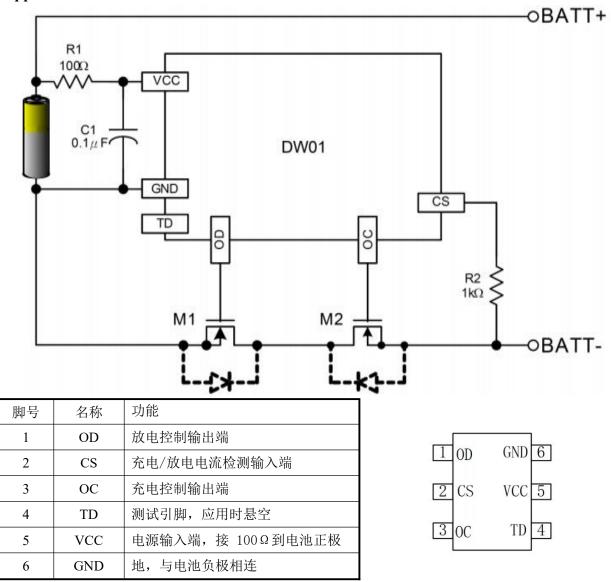
ANHUI FOSAN SEMICONDUCTOR TECHNOLOGY CO., LTD.

DW01

■Absolute Maximum Ratings 最大额定值

特性参数	符号	额定值	单位
电源电压	VCC	-0.3~10	V
OD输入电压	V_{OD}	-0.3~VCC+0.3	V
CS输入电压	V_{CS}	VCC-14~VCC+0.3	V
OC输入电压	Voc	VCC-14~VCC+0.3	V
静电放电	ESD(HBM)	2000	V
焊接(10秒)/工作温度	T_{A}	265/-40~+85	$^{\circ}$
结温/储存温度	$T_{\rm J}/T_{ m Stg}$	-40~+125	${\mathbb C}$

■Electrical Characteristics 电特性(T_A=25℃ unless otherwise noted 如无特殊说明,温度为 25℃)


特性参数(测试条件)	符号	最小值	典型值	最大值	单位
掉电模式电流(VCC=2.0V)	I_{PDN}		2.0		uA
工作模式电流(VCC=3.9V)	I _{OPE}	1.8	3.0	6.0	uA
过电压充电保护电压	V _{OCP}	4.25	4.30	4.35	V
过电压充电释放电压	V _{OCR}	4.05	4.10	4.15	V
过电压放电保护电压	V _{ODP}	2.30	2.40	2.50	V
过电压放电释放电压	V _{ODR}	2.90	3.00	3.10	V
充电检测电压	V_{CH}	-1.2	-0.7	-0.2	V
负载检测电压	V_{LD}	0.12	0.15	0.18	V
过电流放电保护电压	V _{IOV}	120	150	180	mV
电池短路保护电压(VCC=3.6V)	V _{SHORT}	0.7	1.0	1.3	V
充电过流保护电压	V_{CIP}	-1.2	-0.7	-0.2	V
过充电保护延迟时间(VCC=3.6V→4.4V)	Тос	_	100	200	mS
过放电保护延迟时间(VCC=3.6V→2.0V)	T _{OD}	_	50	100	mS
过电流放电保护延迟时间(VCC=3.6V)	T _{IOV}	_	10	20	mS
电池短路保护延迟时间(VCC=3.6V)	T _{SHORT}	_	50	400	μS
充电过电流保护延迟时间(VCC=3.6V, CS=-1.2V)	T_{CIP}	_	10	20	mS
OD 引脚输出高电平(I _{OD} =-10μA)	V _{ODH}	VCC-0.1	VCC-0.2		V
OD 引脚输出低电平(I _{OD} =10μA)	V _{ODL}		0.07	0.5	V
OC 引脚输出高电平(I _{OC} =-10μA)	V _{OCH}	VCC-0.1	VCC-0.2		V
OC 引脚输出低电平(Ioc=10μA)	V _{OCL}		0.07	0.5	V
0 充电允许电压阈值(充电器电压)	V _{OV-CH}	1.2	_	_	V
0 充电禁止电压阈值(电池电压)	V _{OV-IN}	_	_	0.5	V

ANHUI FOSAN SEMICONDUCTOR TECHNOLOGY CO., LTD.

DW01

■Application Circuit 应用电路

应用说明

DW01 是一款高精度的锂电保护芯片,通过监测 CS 引脚电位,导通或关断 N-MOS 管,从而断开电池与负载或充电器的连接,保护电池不因过充电、过放电和短路等情况而损坏。下面各类情况是对典型应用图的分析:

(一) 正常工作状态

未检测到异常情况,电池可以自由充电与放电,称为正常工作状态,此时 VCC 端电压在过电压放电保护电压 Vodp 与过电压充电保护电压 Vocp 之间,CS 电压在充电检测电压 Vcd 与过电流放电保护电压 Viov 之间,OC、OD 引脚均输出高电平,外部充电控制 N-MOS 管 M2 和放电控制 N-MOS 管 M1 均导通。

ANHUI FOSAN SEMICONDUCTOR TECHNOLOGY CO., LTD.

DW01

(二) 过电压充电保护

在电池正常充电期间,VCC 端电压高于过电压充电保护电压(VoCP)且持续时间超过过电压充电保护延迟时间(ToC)时,充电控制端 OC 由高电平转变成低电平,使得外部充电控制 N-MOS 管 M2 关闭,充电回路被关断,DWO1 进入过电压充电保护状态。以下两种情况,芯片退出过电压充电保护:

- 1) 当电池电压降至过电压充电释放电压(Vocr)以下时,DW01 返回正常状态:
- 2) 电池连接负载并开始放电时,虽然此时 M1 处于关断状态,但由于体内二级管 Q2 的存在,放电回路仍然存在,当 VCC 端电压低于过电压充电保护电压 Vocp 且 CS 端电压高于过电流放电保护电压 Viov 时,DW01 返回正常状态。

DW01 返回正常状态后,充电控制端 OC 输出高电平,使外部控制 N-MOS 管 M2 回到导通状态。在 DW01 进入过电压充电保护状态后,即使一直连接充电器,只要 VCC 端电压低于过电压充电释放电压 Vocr 后, DW01 也会恢复正常状态。

(三) 过电压放电保护

如果电池电压在正常放电期间降至过电压放电保护电压(VODP)以下且持续时间超过过电压放电保护延迟时间(TOD)时,放电控制端 OD 由高电平转变成低电平,使得外部充电控制 N-MOS 管 M1 关闭,放电回路被关断,DWO1 进入过电压放电保护状态。恢复条件如下:

在此状态下,接入充电器对电池进行充电,由于体内二极管 Q1 的存在,充电回路仍然存在,当 VCC 电压达到过电压放电恢复电压 Vopr 后,芯片退出过电压放电保护。

(四) 过电流放电保护/短路保护

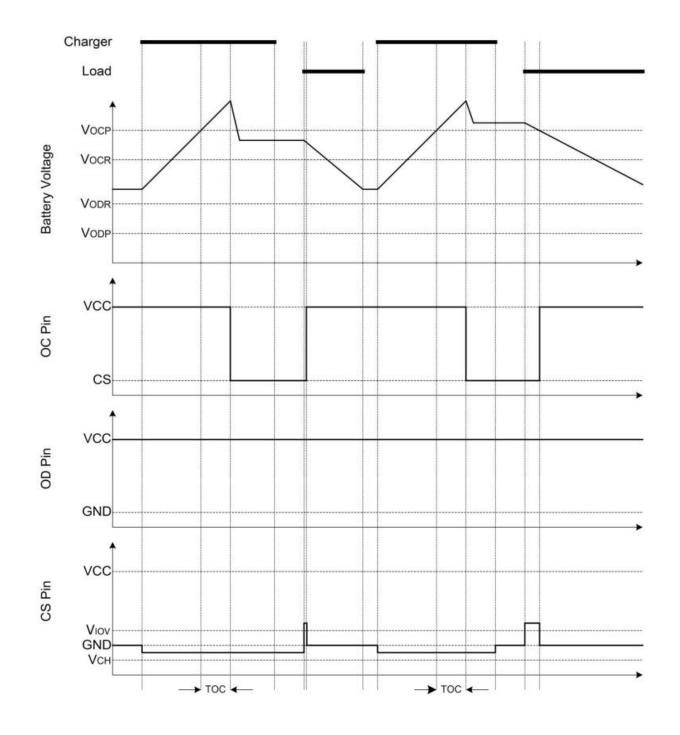
正常状态下,电路通过负载对电池进行放电,充电检测端 CS 电压随负载电流的增大而升高。如果放电电流增大至使 CS 端电压超过过电流放电保护电压(VIOV)且持续时间超过过电流放电保护延迟时间(TIOV)时,DW01 进入过电流放电保护状态;如果放电电流继续增大使 CS 端电压超过电池短路保护电压(VSHORT)且持续时间超过过电流放电保护延迟时间(TSHORT)时,DW01 进入电池短路保护状态。DW01 处于过电流放电保护/电池短路保护状态下,放电控制端 OD 由高电平转变成低电平,使得外部放电控制 N-MOS 管 M1 关闭,放电回路被关断,同时 CS 端通过内部电阻 RVMS 接连至 GND。恢复条件如下:

在此状态下,如果 BAT+与 BAT-之间的阻抗大于 500KΩ或者负载释放后,DW01 返回正常状态,放电控制端 OD 变为高电平,使外部放电控制 N-MOS 管 M1 导通。

(五) 充电状态检测

在 DW01 处于过电压放电保护状态时,外部控制 N-MOS 管关闭,放电被抑制,但由于 N-MOS 管体二极管的存在,此时仍然被允许充电。当外部充电器接入后,芯片对 CS 引脚电压 进行检测,如果 CS 端电压低于充电检测电压 (VCH),则 DW01 恢复正常状态。

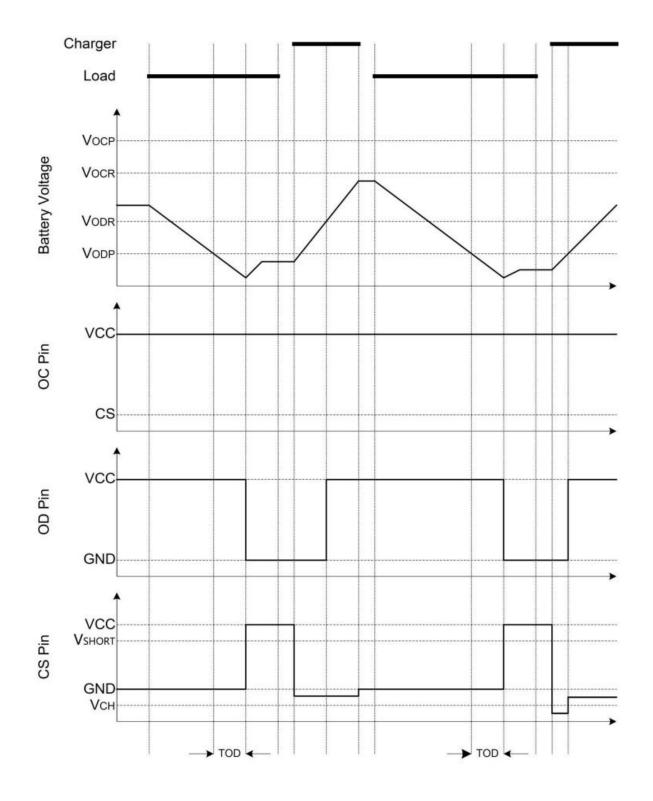
(六) 0V 电池充电功能


如果使用充电器对 0V 电池进行充电,当 DW01 芯片 VCC 端与 CS 端电压差大于 0V 充电允许电压阈值 Vov_CH 时,其充电控制端 0C 将被上拉至 VCC 端。若上述电压能使外部充电控制 N-MOS 管 M2 导通,则可配合外部放电控制 MOS 管的体二极管 Q1 形成充电回路,对电池进行充电,当电池电压升高超过过电压放电保护电压(Vodp)时,DW01 恢复正常状态,放电控制端 0D 输出高电平,外部放电控制 N-MOS 管 M1 导通,形成新的充电回路。

ANHUI FOSAN SEMICONDUCTOR TECHNOLOGY CO., LTD.

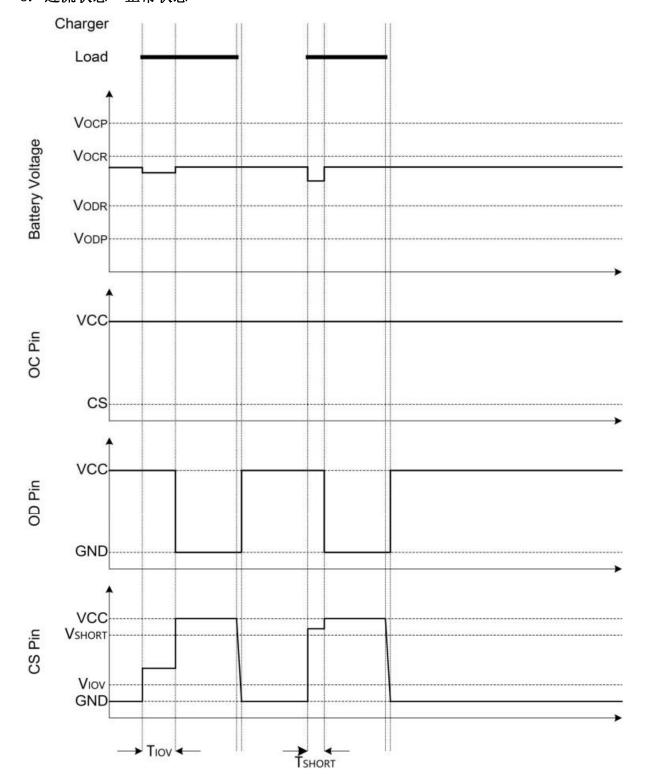
DW01

工作时序图


1. 过电压充电状态 → 负载放电 → 正常状态

ANHUI FOSAN SEMICONDUCTOR TECHNOLOGY CO., LTD.

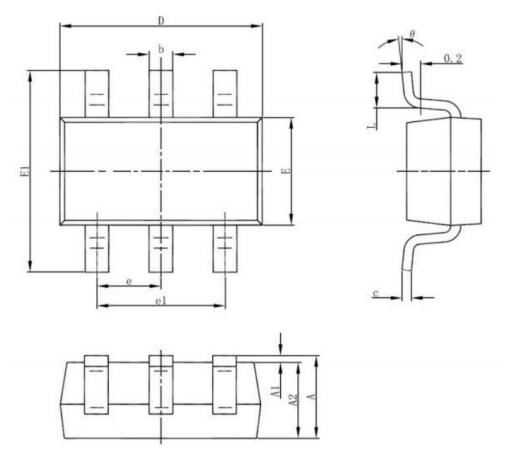
DW01


2. 过电压放电状态 → 接入充电器 → 正常状态

ANHUI FOSAN SEMICONDUCTOR TECHNOLOGY CO., LTD.

DW01

3. 过流状态→正常状态



ANHUI FOSAN SEMICONDUCTOR TECHNOLOGY CO., LTD.

DW01

■Dimension 外形封裝尺寸

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
Е	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
e	0.900	1.00	0.035	0.039
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	00	8°	0°	8°